Control for Schrödinger Operators on Tori

نویسندگان

  • NICOLAS BURQ
  • M. ZWORSKI
چکیده

A well known result of Jaffard states that an arbitrary region on a torus controls, in the L sense, solutions of the free stationary and dynamical Schrödinger equations. In this note we show that the same result is valid in the presence of a potential, that is for Schrödinger operators, −∆ + V , V ∈ C∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Essential Spectrum of Schrödinger, Jacobi, and Cmv Operators

We provide a very general result that identifies the essential spectrum of broad classes of operators as exactly equal to the closure of the union of the spectra of suitable limits at infinity. Included is a new result on the essential spectra when potentials are asymptotic to isospectral tori. We also recover with a unified framework the HVZ theorem and Krein’s results on orthogonal polynomial...

متن کامل

The Essential Spectrum of Schrödinger, Jacobi, and Cmv Operators Yoram Last and Barry Simon

We provide a very general result that identifies the essential spectrum of broad classes of operators as exactly equal to the closure of the union of the spectra of suitable limits at infinity. Included is a new result on the essential spectra when potentials are asymptotic to isospectral tori. We also recover with a unified framework the HVZ theorem and Krein’s results on orthogonal polynomial...

متن کامل

On two-dimensional finite-gap potential Schrödinger and Dirac operators with singular spectral curves

In the present paper we describe a wide class of two-dimensional potential Schrödinger and Dirac operators which are finite-gap on the zero energy level and whose spectral curves at this level are singular and, in particular, may have n-multiple points with n ≥ 3. Dirac operators with such spectral curves are important for the Weierstrass representation of tori in R [1, 2]. A study of finite-ga...

متن کامل

Continuity of Measure of the Spectrum for Schrödinger Operators with Potentials Driven by Shifts and Skew-shifts on Tori

We study discrete Schrödinger operators on l2(Z) with γ-Lipschitz potentials defined on higher dimensional torus (Td, T ), where T is a shift or skew-shift with frequency α. We show that under the positive Lyapunov exponent condition, measure of the spectrum at irrational frequency is the limit of measures of spectra at rational approximations.

متن کامل

Control for Schrödinger Operators on 2-tori: Rough Potentials

For the Schrödinger equation, (i∂t + ∆)u = 0 on a torus, an arbitrary nonempty open set Ω provides control and observability of the solution: ‖u|t=0‖L2(T2) ≤ KT ‖u‖L2([0,T ]×Ω). We show that the same result remains true for (i∂t + ∆ − V )u = 0 where V ∈ L(T), and T is a (rational or irrational) torus. That extends the results of [1], and [8] where the observability was proved for V ∈ C(T) and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011